top of page

PATENTS

1.White Light Emission From Single Semiconductor Material Based On Trivalent Mixed Halide Double Perovskites

Aravind Kumar Chandiran, A. Tamilselvan and Poonam Sikarwar

Indian Patent, Application No. 201941046554

PCT Application No. PCT/IN2020/ 050951​

2. Semiconductor electrode comprising a blocking layer.

A. K. Chandiran, Md. K. Nazeeruddin & M. Grätzel.

WO/2013/084029, International Application No.:PCT/IB2011/055550, Publication Date: 13.06.2013.

PUBLICATIONS

 

2021

33. Enhanced H2 evolution through water splitting using TiO2/ultrathin g-C3N4: A type II heterojunction photocatalyst fabricated by in situ thermal exfoliation

N. Khatun, S. Dey, T. Appadurai, A.K. Chandiran, and S.C. Roy

Applied Physics Letters, 2021, vol. 119, p. 93901

32. Role of Copper in Enhancing Visible Light Absorption in Cs2Ag(Bi, In, Sb)Cl6 Halide Double-Perovskite Materials

T. Appadurai, S. Chaure, M. Mala, and A.K. Chandiran

ACS Energy & Fuels, 2021, vol. 35, p. 11479

31. Manipulation of parity and polarization through structural distortion in light-emitting halide double perovskites (OPEN ACCESS)

T. Appadurai, R. Kashikar, P. Sikarwar, S. Antharjanam, BRK Nanda, and A.K. Chandiran

Communications Materials (Nature), 2021, vol. 2, p. 68

30. BiVO4/Cs2PtI6 Vacancy-Ordered Halide Perovskite Heterojunction for Panchromatic Light Harvesting and Enhanced Charge Separation in Photoelectrochemical Water Oxidation

J.P. Jayaraman, M. Hamdan, M. Velpula, N.S. Kaisare and A.K. Chandiran

ACS Applied Materials and Interfaces, 2021, vol. 13, p. 16267

2020

29. Solar energy storage in Cs2AgBiBr6 halide double perovskite photoelectrochemical cell.

K. Prabhu, and A. K. Chandiran.

ChemComm, 2020, vol. 56, p. 7329

28. Air, Moisture, Extreme pH Stable Cs2PtI6 Halide Perovskite for Photoelectrochemical Solar Water Oxidation.

M. Hamdan, and A. K. Chandiran.

Angewandte Chemie International Edition, 2020, vol. 59, p. 16033

2017

27. Investigation on the interface modification of TiO2 surface by functional coadsorbents for high efficiency Dye Sensitized Solar Cells.

A. K. Chandiran, S.M. Zakeeruddin, R. Humphry-Baker, Md. K. Nazeeruddin, M. Grätzel, and F. Sauvage.

ChemPhysChem, 2017, vol. 18, p. 2724

26. Pyridyl- and Picolinic Acid-Substituted Zn(II)Phthalocyanines for Dye-Sensitized Solar Cells.

J. Pita, M. Urbani, G. Bottari, M. Ince, S. Amit Kumar, A.K. Chandiran, J-H. Yum, M. Graetzel, Md. K. Nazeeruddin, and T. Torres.

ChemPlusChem, 2017, DOI: 10.1002/cplu.201700048.

2015

25. Double D-π-A dye linked by 2,2'-bipyridine dicarboxylic acid: the influence of para and meta substituted carboxyl anchoring group.

P. Ganesan, A. K. Chandiran, P. Gao, R. Rajalingam, M. Grätzel, and M. K. Nazeeruddin.

ChemPhysChem, 2015, vol. 16, p. 1035.

2014

 

24. Sub-nanometer conformal TiO2 blocking layer for high-efficiency solid-state CH3NH3PbI3 absorber solar cells. 

A. K. Chandiran, A. Yella, M. T. Mayer, P. Gao, Md. K. Nazeeruddin and M. Grätzel.

Advanced Materials, 2014, vol 26, p. 4309.

23. The role of insulating oxides in blocking the charge carrier recombination in dye-sensitized solar cell. 

A. K. Chandiran, Md. K. Nazeeruddin and M. Grätzel.

Advanced Functional Materials, 2014, vol. 24, p. 1615.

22.  Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells.

A. K. Chandiran, M. Abdi Jalebi, A. Yella, M. Ibrahim Dar, Chenyi Yi, Srinivasrao A. Shivashankar, Md. K. Nazeeruddin and M. Grätzel.

ACS Nano, 2014, vol. 8, p. 2261.

21. Quantum-Confined ZnO Nanoshell Photoanodes for Mesoscopic Solar Cells.

A. K. Chandiran, M. Abdi Jalebi,  Md. K. Nazeeruddin and M. Grätzel.

Nano Letters, 2014, vol. 14, p. 1190.

20. Passivation of ZnO Nanowire Guest and 3D Inverse Opal  Host Photoanode for Dye-Sensitized Solar Cells.

P. Labouchere, A. K. Chandiran, T. Moehl, H. Harms, S. Chavan, R. Tena-Zaera, Md. K. Nazeeruddin, M. Grätzel and N. Tetreault.

Advanced Energy Materials, 2014, vol. 4, p. 1400217.

19. Cylcopentadithiophene-functionalized Ru(II)-bipyridine sensitizers for dye-sensitized solar cells.

M. Urbani, M. Medel, S. Amit Kumar, A. K. Chandiran, D. González-Rodríguez, M. Grätzel, M. K. Nazeeruddin, T. Torres.

Polyhedron, 2014, vol. 82, p. 132.

18. Toward higher photovoltage: Effect of blocking layer on cobalt complexes as redox shuttle for dye-sensitized solar cells.

J-H. Yum, T. Moehl, J. Yoon, A.K. Chandiran, F. Kessler and M. Grätzel.

The Journal of Physical Chemistry C, 2014, vol. 118, p. 16799.

17. Molecular engineering of 2-Quinolinone based anchoring groups for dye sensitized solar cells. 

P. Ganesan, A. K. Chandiran, P. Gao, R. Rajalingam, Md. K. Nazeeruddin.

The Journal of Physical Chemistry C, 2014, vol. 118, p. 16896.

16. Sterically hindered phthalocyanines for dye-sensitized solar cells: Influence of the distance between the aromatic core and the anchoring group.

M. Ragoussi, J. Yum, A. K. Chandiran, M. Ince, G. Torre, M. Grätzel, M. K. Nazeeruddin, T. Torres

ChemPhysChem, 2014, vol. 15, p. 1033.

15. Adapting ruthenium sensitizers to cobalt electrolyte systems.

S. Amit Kumar, M. Urbani, M. Medel, M. Ince, D. Gonzalez Rodriguez, A. K. Chandiran, A. N. Bhaskarwar, T. Torres, M. K. Nazeeruddin and M. Grätzel. 

The Journal of Physical Chemistry C, 2014, vol. 5, p. 501.

14. Branched and bulky substituted Ruthenium sensitizers for Dye-Sensitized Solar Cells.

M. Sánchez Carballo, M. Urbani, A. K. Chandiran, D. González-Rodríguez, P. Vázquez, M. Grätzel, M.K. Nazeeruddin and T. Torres. Dalton Transactions, 2014, vol. 43, p. 15085.

13. Controlled one-stop synthesis of TiO2 nanoparticles and nanospheres using microwave assisted approach with their application in dye-sensitized solar cells.

M. Ibrahim Dar, A. K. Chandiran, S. Sampath, M. Grätzel, Md. K. Nazeeruddin and S. A. Shivashankar.

Journal of Materials Chemistry A, 2014, vol. 2, p. 1662.

12. Y-substituted nanocrystalline TiO2 photoanode for CH3NH3PbI3 based heterojunction solar cells.

P. Qin, A. L. Domanski, A. K. Chandiran, H-J. Butt, R. Berger, M. I. Dar, T. Moehl, N. Tétreault, P. Gao, S. Ahmad, Md. K. Nazeeruddin and M. Grätzel. Nanoscale, 2014, vol. 6, p. 1508.

 

2013

11. Evaluating the critical thickness of TiO2 layer on insulating mesoporous templates for efficient current collection in dye-sensitized solar cells.

A. K. Chandiran, P. Comte, R. Humphry-Baker, F. Kessler, C. Yi, Md. K. Nazeeruddin and M. Grätzel.

Advanced Functional Materials, 2013, vol. 23, p. 2775.

10. Low temperature crystalline titanium dioxide by atomic layer deposition for dye-sensitized solar cells.

A.K. Chandiran, A. Yella, M. Stefik, L-P. Heiniger, P. Comte, Md. K. Nazeeruddin and M. Grätzel.

ACS Applied Materials and Interfaces, 2013, vol. 5, p. 3487.

9. Anatase TiO2 Hollow Microspheres Fabricated by Continuous Spray Pyrolysis as a Scattering Layer in Dye-Sensitised Solar Cells.

C. Dwivedi, V. Dutta, A. K. Chandiran, Md. K. Nazeeruddin and M.Grätzel.

Energy Procedia, 2013, vol. 33, p. 223.

8. The application of electrospun titania nanofibers in dye-sensitized solar cells.

H. Krysova, A. Zukal, J. Trckova-Barakova, A.K. Chandiran, M.K. Nazeeruddin, M. Grätzel and L. Kavan.

Chimia, 2013, vol. 67, p. 149.

2012

7. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.

L. Etgar, P. Gao, Z. Xue, P. Qin, A. K. Chandiran, L. Bin, M. K. Nazeeruddin and M. Graetzel.

Journal of the American Chemical Society, 2012, vol. 134, p. 17396.

6. Sub-nanometer Ga2O3 tunneling layer by atomic layer deposition to achieve 1.1V open-circuit potential in dye-sensitized solar cells.

A.K. Chandiran, N. Tetreault, R. Humphry-Baker, F. Kessler, E. Baranoff, C.Yi, Md.K. Nazeeruddin and M. Grätzel.

Nano Letters, 2012, vol. 12, p. 3941.

5. Electrical properties of Nb-, Ga-, and Y-substituted nanocrystalline anatase TiO2 prepared by hydrothermal synthesis.

E.Mitchell Hopper, F. Sauvage, A.K. Chandiran, M. Grätzel, K.R. Poeppelmeier, T.O. Mason.

 Journal of the American Ceramic Society, 2012, vol. 95, p. 3192.

2011

4. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Graetzel. 

Science, 2011, vol. 334, p. 629.​

3. Ga3+ and Y3+ cationic substitution in mesoporous TiO2 photoanodes for photovoltaic applications.

A. K. Chandiran, F. Sauvage, L. Etgar and M. Grätzel.

The Journal of Physical Chemistry C, 2011, vol. 115, p. 9232.

2010

 

2. Doping a TiO2 photoanode with Nb5+ to enhance transparency and charge collection efficiency in dye-sensitized solar cells.  

A. K. Chandiran, F. Sauvage, M. Casas-Cabanas, P. Comte, S. M. Zakeeruddin and M. Graetzel.

The Journal of Physical Chemistry C, 2010, vol. 114, p. 15849.

2009

 

1. Solution-processed conjugated polymer organic p-i-n light-emitting diodes with high built-in potential by solution- and solid-state doping.

S. Sankaran, Z. Mi, A. K. Chandiran, Z.-L. Chen, R.-Q. Png, L.-L. Chua and P. K. H. Ho.

Applied Physics Letters, 2009, vol. 95, p. 213303

bottom of page